Relative perturbation theory for definite matrix pairs and hyperbolic quadratic eigenvalue problem ## Ninoslav Truhar Department of Mathematics, University of Osijek, Osijek, Croatia, ntruhar@mathos.hr September 13, 2013 ## Abstract We will present relative perturbation theory for a definite matrix pairs $A - \lambda B$, where both A and B are nonsingular Hermitian matrices, respectively. Obtained results show that upper bounds for eigenvalues as well as for eigenvectors of perturbed pair $\widetilde{A} - \lambda \widetilde{B}$, are similar to the bounds for the diagonalizable eigenvalue problem. We will also show, how the obtained results can be applied on the quadratic hyperbolic eigenvalue problem $(\lambda^2 M + \lambda C + K)x = 0$, where M and K are Hermitian positive definite, and for C holds $(x^*Cx)^2 > 4(x^*Mx)(x^*Kx)$ for all $x \in \mathbb{C}^n$, $x \neq 0$.